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Abstract

This paper explores the application of Semantic
Web Technologies (SWT), specifically the Web
Ontology Language (OWL), Shapes Constraint
Language (SHACL), and Semantic Web Rule Lan-
guage (SWRL), to model the knowledge represen-
tation and reasoning functionality of OpenKAT, a
vulnerability analysis tool. Focusing on a subset
of OpenKAT, our implementation achieves near
feature-parity. We explain the layout of our on-
tology, how we leverage SHACL shapes for con-
straint enforcement, and how we use SWRL for
logical inference. Challenges such as handling the
open world assumption are discussed. Finally, we
discuss limitations and provide valuable insights
into the potential and constraints of using Semantic
Web Technologies for vulnerability analysis tools.

1 Introduction

OpenKAT1 is a free and open source vulnerability anal-
ysis tool. It collects information about (networked) en-
tities2 through boefjes, and then normalises the output
into a common data model through whiskers. Busi-
ness rules (bits) then draw conclusions from the data
and create findings (if any). This results in a constant
feedback loop that automatically explores infrastruc-
ture and objects and fills the data model with new
information. Critically, OpenKAT is recursive in the
sense that newly created objects may also be used as
input for boefjes, whiskers, and bits. In OpenKAT,
this data model is implemented through the Octopoes
module, as strict-typed Python classes backed by a bi-
temporal knowledge graph3. OpenKAT gains knowl-
edge through three methods:

• Observation by scanning the world;

• Information declared to be true by users;

• Reasoning through defined rules (bits).

There is currently no formal modelling regarding
the knowledge graph and accompanying rule engine,

1https://openkat.nl
2Such as hostnames and IP-addresses.
3https://www.xtdb.com

beyond what is implemented in the Python code. How-
ever, as Lisser (2023) notes, Octopoes operates in the
domain of first-order logic and open-world reasoning.
A formalised ontology can help with identifying incon-
sistencies in the models and rules. It would be helpful
to detect modelling issues that stem from (implicit)
inference chaining, where the result of some rule is
used as input for another. Occasionally, there have
been unexpected bugs in the software which ended up
being logical consequences resulting from Octopoes’
inference4. In addition, semantic web technologies
enable versioned, interoperable, and distributed on-
tologies (e.g. different OpenKAT deployments can
have flexible modifications in their data model).

While the architecture of KAT is quite clear
and documented, the workings of Octopoes
are still slightly obscure and not sufficiently
formally defined. This lack of documen-
tation and formalization in this core com-
ponent of KAT is currently resulting in
unclear constraints considering the rule-
engine, vagueness of to be made trade-
offs between expressivity and computational
complexity, and more. - Lisser (2023)

In this paper, we propose to build an ontology com-
bining the Web Ontology Language (OWL), Shapes
Constraint Language (SHACL), and Semantic Web
Rule Language (SWRL).

1.1 Research questions
Our goal is to create a formal model of a part of
OpenKAT using OWL, SHACL, and SWRL. There-
fore, our first research question is “Can we reach
feature-parity on a subset of OpenKAT with Semantic
Web Technologies?”

This project is exploratory: it is at the start unknown
what is possible, what the difficulty is, and what fits in
the scope of this project. Thus, the goal is to investi-
gate this, so that in the case of future work, it is better
known what to keep in mind for similar endeavours.

4For example, see https://github.com/minvws/
nl-kat-coordination/issues/{1701, 1963, 1087}.
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Therefore, our second research question is “What (if
any) problems arise when modelling OpenKAT with
Semantic Web Technologies?”

2 Related work

Previous attempts at standardising information within
the cybersecurity domain include the Unified Cyber
Ontology (UCO)5 by Syed et al. (2016). UCO pro-
vides a standardized model for representing, exchang-
ing, and analyzing cyber-related information using
RDF/OWL and SHACL. Since the UCO aims to be
domain-agnostic and broad, it is very abstract which
makes practical applications challenging. However, it
does highlight the possibilities for ontologies in the cy-
bersecurity domain. Moreover, Oltramari et al. (2014)
mentions that with a rapidly expanding cyber land-
scape, building a comprehensive model remains a ma-
jor objective for the cybsersecurity community. How-
ever, these attempts at ontologies seem to be based
around the purpose of classifying different attacks by
incorporating rich catalogs of cyber attacks, exploits
and vulnerabilities. This is different than our goal of
modelling an existing system with some defaults to
pinpoint these defaults.

Rivadeneira and Gómez (2020) provides a systemic
literature review of the use of ontologies in cyberse-
curity. While some papers used a methodology like
Methontology, most papers construct ontologies us-
ing Protégé. This seems to indicate that Protégé is
the industry-standard tool for building (cybersecurity)
ontologies.

There has been more work in the field of cyber-
security knowledge graphs, but none are similar to
OpenKAT (Chen et al., 2002; Iannacone et al., 2015;
Mavroeidis and Bromander, 2017; Liu et al., 2022).

3 Methods

3.1 Ontology

We detail the layout of the ontology, starting with the
classes, followed by the object properties and the data
properties. For the sake of conciseness, details about
the individuals that populate these classes are left out.
However, they are visible in the ontology.

3.1.1 Class Hierarchy

The classes in the ontology represent the main struc-
ture of the components in the mispo.es site. For in-
stance, it reflects the multiple types of DNSRecords,
IPAddress and DNSSPF Mechanisms. A complete
overview can be found in Figure 1.

5https://unifiedcyberontology.org/

Figure 1: Hierarchy of classes in the ontology.

3.1.2 Object Properties
In order to model the different relations between the
components of a network, object properties are needed.
An overview is presented in Table 1.

3.1.3 Data Properties
Data properties serve to differentiate multiple individ-
uals within the same class. In Table 2, an overview is
presented of the data properties, as well as their range
and domain. While these properties do not reflect the
entirety of a network, they represent the important
elements that are needed to make inferences.

3.2 SHACL
When building an ontology as large as this, in terms
of classes, data properties and instances, mistakes are
bound to happen when creating it. To partially allevi-
ate this issue, a Shapes Constraint Language (SHACL)
shape was created for each class. By creating a shape,
we are able to enforce certain conditions for each class
to ensure an instances satisfies the right properties.
For instance, the DNSARecord shape gives a warn-

2

https://unifiedcyberontology.org/


ing if an instance does not have the object property
hasIPAddress. A complete overview of all the shapes
is given in Table 3. Conceptually, SHACL makes a
closed-world assumption on a single class.

3.3 Inference & SWRL

Many bits in OpenKAT parse one or more objects and
add new properties or relationships to these objects.
To infer object and data properties based on other prop-
erties, one can use the Semantic Web Rule Language,
or SWRL. Protégé is equipped with a plugin to make
such rules. These rules can then be used by the Pellet
reasoner to make inferences. Examples of SWRL rules
are shown throughout this report.

4 Results

4.1 Reflection on current ontology

In OpenKAT, URL is subclass of OOI, WebURL of
OOI and HostnameHTTPURL of WebURL. Our cur-
rent model has HostnameHTTPURL as subclass for
URL. We asserted the URL https://mispo.es, and
SWRL rules add the scheme, port and path to the
existing URL object. Because these data properties’
domains are HostnameHTTPURL, the URL object is
inferred to be also of class HostnameHTTPURL. This
is actually quite convenient: we don’t have to create
a new object like OpenKAT, but if we were to query
for HostnameHTTPURL objects, we would still get
something back. So objects having this class is an
indication that it is a processed URL.

Similarly, in OpenKAT, ResolvedHostname is not
a subclass of Hostname. But as we have modelled it
as such, and set the ResolvesToAddress’s domain to
ResolvedHostname, Protégé infers that a Hostname
for which it has been inferred that it resolves to an IP
address is a ResolvedHostname. For other rules or for
querying purposes, this could be useful.

4.2 Weakened inference due to OWA

OWL makes an open-world assumption. This can
be paraphrased by the maxim the absence of evi-
dence is not evidence of absence, and means that
OWL reasoners only infer things based on positive
evidence. In practice, this makes inferring things
through classical logical negation non-trivial. For
example, consider the class Hostname which has
two subclasses, HostnameWithDNSAAAARecord and
HostnameWithoutDNSAAAARecord. If one makes the
following assertions:

• Hostname is the disjoint union of
HostnameWithDNSAAAARecord and
HostnameWithoutDNSAAAARecord;

• HostnameWithDNSAAAARecord is equivalent to
having 1 or more linked DNSAAAARecords;

• HostnameWithoutDNSAAAARecord is equivalent
to having at most 0 linked DNSAAAARecords.

Then by these definitions, both subclasses are each
others inverse, and membership of them is mutually
exclusive. In a closed-world, in which the knowledge
base is considered complete and authoritative, an in-
stance of a Hostname must also be either one of the
subclasses. This makes sense intuitively, as you ei-
ther have a linked record, or you do not. In logic
programming languages such as Prolog, this is imple-
mented through negation-as-failure and is known as
weak negation.

With these definitions, an OWL rea-
soner correctly infers Hostnames with 1 or
more linked DNSAAAARecords to also be a
member of HostnameWithDNSAAAARecord.
However, Hostnames without any linked
DNSAAAARecords are not inferred to be mem-
bers of HostnameWithoutDNSAAAARecord. At a
surface level, this is annoying, as we might think that
this piece of obvious knowledge should be applied to
the data.

However, this is may actually be desired behaviour
in the context of OpenKAT. As OpenKAT has incom-
plete knowledge about the world (i.e., there may be
unseen objects, or knowledge about existing objects
that we don’t know about, because we have not yet dis-
covered them through boefjes), new information from
scans might very well invalidate assumptions made in
a closed-world. This can be easily demonstrated with
the following simple experiment:

1. Create a fresh installation of OpenKAT6;

2. Disable all boefjes (but keep bits and whiskers
enabled);

3. Add any Hostname and let all bits run.

Then, notice that the findings KAT-MISSING-DKIM,
KAT-MISSING-SPF, and KAT-MISSING-DMARC are cre-
ated. At a surface level, this might seem fine. But note
that OpenKAT has made a claim about the world based
on the absence of evidence, without actually having
bothered to scan anything at all. It is entirely possi-
ble that these findings are immediately invalidated by
a single boefje scan, as it might turn out the object
in question does indeed have valid DKIM, SPF, and
DMARC. This illustrates a fundamental consideration
that has to be made for OpenKAT: is it acceptable to

6Any version from before this paper was written.
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make claims about security without having gathered
any substantial evidence?

The advantage of monotonic (i.e., open-world) rea-
soning is that additional knowledge will not invalidate
previous claims. When the system makes claims, these
are always based on the existence of concrete positive
evidence. Non-monotonic (i.e., closed-world) reason-
ing (Strasser and Antonelli, 2019) is more powerful,
in the sense that more knowledge can be inferred over-
all. However, this comes at the risk of new evidence
invalidating previous claims. This is related to the
concepts of belief revision and defeasible reasoning in
formal logic (Hansson, 2022; Koons, 2022), and can
result in awkward situations such as the one described
above. Note that negation-as-failure is considered to
be a form of non-monotonic, autoepistemic modal
logic (Garson, 2023): if something cannot be proven,
then it is believed to be false.

Open-world and closed-world reasoning are not
fully mutually exclusive, and some implementations
of the semantic web support local closed-world rea-
soning (Grimm and Motik, 2005; Lamy, 2017). This
means that the ontology overall is treated as if it is
open, but some parts may be explicitly asserted to be
complete (such as membership of some class through
negation). Regardless, we believe OpenKAT should
make a conscious decision which model of inference
should be adopted, and that it should be made clear to
stakeholders what that means for their security.

As an alternative to findings based on the absence
of things, OpenKAT could consider an approach based
on the total state of knowledge. For example, instead
of throwing KAT-MISSING- findings, it could provide
users with some sort of pre-defined checklist for cer-
tain classes, which could look like this:

Hostname openhond.nl

• Discovered valid DKIM

– [X] DKIM was found, but it was not valid
(strong negative evidence)

• Discovered valid SPF

– [ ] No SPF found (yet) (weak negative evi-
dence)

• Discovered valid DMARC

– [ ] No DMARC found (yet) (weak negative
evidence)

• Discovered valid DNSSEC

– [V] Valid DNSSEC found (strong positive
evidence)

• Discovered at least one valid IPv6 record along-
side IPv4 record(s)

– [-] Not applicable, as no IPv4 record was
found (missing antecedent condition)

– [ ] No IPv6 record(s) found (yet) (weak
negative evidence)

Arguably, the above checklist is superior to single
findings as it takes into account the strength of evi-
dence. Additionally, it constrains and defines the type
of issues that may plague specific classes.

4.3 Inferring existence of new individuals

In OpenKAT, business rules (bits) apply to objects that
have been manually asserted or found using boefjes
and whiskers. In most cases, the result of the appli-
cation of bits is the inference of new objects. This
poses a problem for modelling bits with semantic web
technologies like OWL and Protégé, as these ontology-
based technologies are not designed to infer the exis-
tence of new individuals. Fortunately, by making some
modeling choices, alternative ways of implementing
these bits is still possible.

4.3.1 New properties
An insightful example is the dns-resolving bit. In
OpenKAT, this bit checks if, for a given Hostname,
there exists in the knowledge graph a DNS A record
or AAAA record which maps the Hostname to an IP
address. If so, this bit yields a new object of the type
ResolvedHostname, which links a hostname to the IP
address it resolves to.

This bit cannot be directly implemented in Pro-
tégé, as new individuals cannot be inferred. Instead, a
SWRL rule can be written as shown in Figure 2. In-
stead of making a new object, this rules adds an object
property, linking to the IP address, to the already ex-
isting Hostname. This avoids the need to make a new
individual. Arguably, assigning a property to an exist-
ing individual is more efficient than creating a new in-
stance of another class. From an ontology perspective,
it also makes more intuitive sense to add a property
instead of making a new object of a completely differ-
ent class; a ResolvedHostname is nothing more than
a Hostname that links to an IP address.

4.3.2 Findings
Next to inferring new links between objects, OpenKAT
also produces findings. Findings represent vulnerabili-
ties of scanned system, which is the end result that the
user of OpenKAT is interested in. In OpenKAT, bits
look for vulnerabilities like misconfigured settings or
the absence of some objects, among others (see Sec-
tion 4.2). If a vulnerability is found, OpenKAT creates
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Hostname ( ? h ) ^ DNSRecord ( ? r ) ^ IPAddre s s ( ? a )
^ h a s I P A d d r e s s ( ? r , ? a ) ^ hasHostname ( ? r , ? h )
−> r e s o l v e s T o A d d r e s s ( ? h , ? a )

Figure 2: SWRL rule for resolving DNS.

a new Finding object, with an appropriate descrip-
tion of the finding. The system then presents all the
findings to the user.

To represent these findings, we made separate
classes for each finding (see Figure 1). Instead of
creating new objects, we have implemented SWRL
rules to make related individuals an instance of the
corresponding Findings class. So for example, if a
Hostname has no DNSSEC, the Hostname will be in-
ferred to be a member of the class KAT-NO-DNSSEC.
This way of modeling findings allows us to retrieve a
list of all findings that have been inferred.

4.4 Limited flexibility in rules

Many bits in OpenKAT parse the text content of an
object’s properties to infer new objects or properties.
The parsing of such text can become quite complicated.
To infer object and data properties based on other
properties, one can use SWRL. Unfortunately, we have
found that the flexibility of the SWRL rules that the
selected reasoner can work with is quite limited.

A simple illustration of this is the
url-classification bit. In OpenKAT, it de-
composes a URL into a schema, a hostname,
and a port. So, for example, it takes the URL
https://mispo.es/home and assigns to the object
the properties that its scheme is https, its hostname
is mispo.es, and its port is 443.

To model this with a SWRL rule
we can use the built-in string operator
swrlb:stringConcat(?y,?x1,?x2,. . . ,?xn),
which is satisfied when the first parameter equals
the concatenation of all other parameters. So,
swrlb:stringConcat(?uri, "https", "://",
"mispo.es") is satisfied if the URI’s scheme is
https and its hostname is mispo.es. This operator
works as expected. To make the rule more generalised,
we have to avoid hardcoding hostnames and schemes.
However, if instead we bind the scheme and hostname
to variables (swrlb:stringConcat(?uri, ?scheme,
"://", ?hostname)), the atom will not be satisfied,
even though there is exactly one combination of
variable bindings that would satisfy it. Similar
problems occur when trying to use regular expressions
to bind a specific part of a string to a variable.
Although we have not found any conclusive evidence,
it seems very likely that this is a limitation of the

reasoner that we have used (Pellet). Unfortunately, as
no other reasoner handles SWRL as well as Pellet,
there is no way to make these general rules work at the
time of writing. Other rules that use variable binding
slightly differently do work. For example, Figure 3
can infer the scheme and path of a URI. Separate rules
are required for when the scheme is not explicitly
present in the URI.

Given that many bits perform text parsing (often
more complicated than this example), the limitations
of the reasoner makes it very convoluted to implement
rules that might easily be implemented in Python.

4.5 Primary keys and distributed ontologies

In the semantic web, the name of an individual is not
of significant concern. Although it is used to con-
struct an individual’s IRI, it has no inherent semantic
or logical meaning. An IRI is used for linking entities
across ontologies. In OpenKAT, the name of an indi-
vidual is the natural key (functional determinant) of its
properties. The reason for this is deduplication: if the
natural keys of two entries are the same, then it must
be the case that they are the same individual. This
reduces storage cost, prevents redundancy, and allows
for easy querying by unique primary key. This implies
the fundamental assumption that all individuals are
uniquely named, which is known as the unique name
assumption.

However, this can be problematic when dealing with
versioned or distributed ontologies. For example, if
there would be an update of the DNSTXTRecord model
such that it modifies one of the natural keys, the pri-
mary key of related individuals would also change,
even though one would probably still consider them to
be fundamentally the same individual. The only way to
avoid this, is by never changing the definitions of nat-
ural keys. This makes implementing future revisions
and corrections tricky, as well as using an external
ontology that extends or modifies the one in OpenKAT.
After all, there is in the current implementation no
reliable way to do consistency checking. Additionally,
considering that Octopoes must have a backwards-
compatible schema in order to support bi-temporality,
this is something that should be addressed.

OWL does not have the unique name assump-
tion. The reason for this is that different IRI’s
(for example, from different ontologies) may still
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URI ( ? u , ? u r i ) ^ s w r l b : s u b s t r i n g B e f o r e ( ? scheme , ? u r i , " : / / " )
^ s w r l b : s u b s t r i n g A f t e r ( ? h o s t p a t h , ? u r i , " : / / " )
^ s w r l b : s u b s t r i n g B e f o r e ( ? hos t , ? h o s t p a t h , " / " )
^ s w r l b : s u b s t r i n g A f t e r ( ? pa th , ? h o s t p a t h , " / " )
−> hasScheme ( ? u , ? scheme ) ^ h a s P a t h ( ? u , ? p a t h )

Figure 3: One of the SWRL rules for url classification, which fires if the URI has the scheme explicitly stated.

refer to the same real-world individual. OWL re-
quires explicitly asserting this through owl:sameAs
and owl:differentFrom. At the cost of potential
redundancy, OWL enables mixing various (backwards-
compatible) ontologies. Critically, mixed ontologies
are then automatically checked for consistency by the
reasoner, provided there are sufficient defined con-
straints in class definitions (OWL) as well as class
shapes (SHACL).

To illustrate, a third-party ontology7 that imple-
ments a hypothetical hond:IPAddressV8 could make
it a subclass of kat:IPAddress and declare it disjoint
with kat:IPAddressV4 and kat:IPAddressV6. A
reasoner will then automatically apply all rules and ax-
ioms related to a kat:IPAddress to the new subclass,
and will throw an error if anything in the combined on-
tology conflicts. If another class, hond:IPAddressV4,
is declared to be equivalent to kat:IPAddressV4,
all existing kat:IPAddressV4 individuals will auto-
matically benefit from any revisions or updates in
hond:IPAddressV4. Indeed, the reasoner will also
immediately detect whether hond:IPAddressV4 con-
tradicts anything in the original ontology. As we
explained earlier, in a monotonic reasoning system
adding additional knowledge should not be a problem.

4.6 Modelling scan levels
In OpenKAT, scan levels apply to objects, range be-
tween 0 and 4, and are either declared by a user, or
inherited from a related object. They are used by a
boefje to determine whether it is allowed to run on a
given object. Non-invasive scans require only a low
scan level, whereas invasive scans require a high scan
level.

4.6.1 Scan level inheritance algorithm
Although it is not explicitly documented, it appears
that the inherited scan level of an object is calculated
by:

• For all incoming relations of the object:

– Retrieve the scan level of the neighbour;
– Retrieve the maximum allowed inheritance

of that type of relationship;
7OpenHOND - Handige Objectgeoriënteerde Netwerk Dumper

– Take the minimum of those.

• Return the highest of all.

We can illustrate this through an example:

• An individual Hostname has a declared scan level
of 4;

• The Hostname has an outgoing relation to an in-
dividual DNSARecord;

• Any relation from a Hostname towards a
DNSARecord maximally inherits 2.

In this scenario, the DNSARecord individual receives
a scan level of 2.

4.6.2 Modelling declared scan levels in SWRL
If a manual declaration is given, it always overrides
any inherited scan level. The naive implementa-
tion through data properties can be seen in Figure
4. However, this does not work when the OWA is
taken into account. A potential workaround is set-
ting hasDeclaredScanLevel explicitly to -1 for ev-
ery individual by default, and enforcing that every
individual has one through SHACL constraints. The
new rules can be seen in Figure 5. Note that in this
scenario, hasScanLevel is only added to individuals
which have explicitly inherited or declared one. Other
individuals are not inferred to have a scan level of 0,
as their scan level is considered unknown.

4.6.3 Modelling neighbour relationships
If all relevant object properties are made a sub-
property of hasOutgoingLinkTo(OOI, OOI), then
modelling incoming and outgoing relations be-
comes trivial. This can be seen in Figure 6. If
isIncomingNeighbourOf(OOI, OOI) is declared
to be the inverse of isOutgoingNeighbourOf(OOI,
OOI), then all OOI’s correctly receive either one de-
pending on whether they are the subject or object of
the predicate. If they are both made subproperties of
isNeighbourOf(OOI, OOI), then that is also auto-
matically added to individuals. This superproperty can
be useful if directionality does not matter, for example
if it just needs to be established that two individuals
are neighbours.
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h a s D e c l a r e d S c a n L e v e l ( ? ooi , ? d e c l a r e d )
−> h a s S c a n L e v e l ( ? ooi , ? d e c l a r e d )

h a s I n h e r i t e d S c a n L e v e l ( ? ooi , ? i n h e r i t e d )
^ n o t ( h a s D e c l a r e d S c a n L e v e l ( ? o o i ) )
−> h a s S c a n L e v e l ( ? ooi , ? i n h e r i t e d )

Figure 4: Declaration and inheritance resolution using logical negation.

h a s D e c l a r e d S c a n L e v e l ( ? ooi , ? d e c l a r e d )
^ s w r l b : l e s s T h a n ( ? d e c l a r e d , 0 )
^ h a s I n h e r i t e d S c a n L e v e l ( ? ooi , ? i n h e r i t e d )
−> h a s S c a n L e v e l ( ? ooi , ? i n h e r i t e d )

h a s D e c l a r e d S c a n L e v e l ( ? ooi , ? d e c l a r e d )
^ s w r l b : g r e a t e r T h a n O r E q u a l ( ? d e c l a r e d , 0 )
−> h a s S c a n L e v e l ( ? ooi , ? d e c l a r e d )

Figure 5: Declaration and inheritance resolution taking into account the OWA.

4.6.4 Modelling min(a, b) in SWRL
SWRL does not have a built-in operator to calculate
the minimum of two arguments8. However, since we
have access to basic arithmetic operators, we can add
our own conditional based on the formula:

min(a, b) =
a+ b− |a− b|

2

In figure 7 it can be seen how this translates
to SWRL. Unfortunately, we have not found an
easy way9 to write a shorthand for this, such as
kat:min(?result, ?arg1, ?arg2). This means
that the above rule has to be added in full to all rules
which need to calculate a minimum.

4.6.5 Modelling inheritance
Using both the min(a, b) rule and the inferred neigh-
bour relationships, we can model inheritance as seen
in Figure 8. In this figure, we maximally assign an
inherited scan level of 2 to a DNSARecord from a neigh-
bouring Hostname (e.g. through hasHostname). Note
that with this implementation, an individual may be
inferred to have multiple inherited scan levels if it has
multiple relations. This is not a problem, however, as
multiple scan levels will be separately used as input
for any rules which need them.

5 Conclusion

As discussed in the previous section, we have shown
that it is possible to model the selected subset of

8http://www.daml.org/2004/04/swrl/builtins.html
9The Pellet reasoner supports custom built-ins, but this requires

extending the Java source code.

OpenKAT with semantic web technologies. This has
some advantages, most notably that it results in highly
interpretable code with first-class support for consis-
tency checking and validation. However, it turns out
that doing so is non-trivial. Specifically, very special-
ized knowledge is required to implement the business
rules used in OpenKAT. This goes far beyond Python
programming, for which less specialized knowledge is
required and more documentation exists to implement
the same functionality. Furthermore, the limited flex-
ibility of the Pellet reasoner may make certain rules
very convoluted to implement. Finally, using semantic
web technologies requires a very deliberate approach
on how to tackle the open-world assumption in order
to make findings. Arguably, this is a positive property
of these technologies: even though the Python-based
OpenKAT system does not require a full solution to the
OWA problem in order to give useful results, having to
tackle the problem directly and explicitly can improve
the reliability and soundness of the produced findings.
We recommend the OpenKAT project to make a con-
scious policy decision on this conceptual issue, as this
also affects the current implementation of OpenKAT.

6 Future work

A useful addition to the ontology would be to investi-
gate the use of atomic functions for string parsing. For
instance, by adding the ability to retrieve a scheme,
host and port from an URL, the ontology gains en-
hanced capabilities for reasoning about URLs. This
facilitates a more straightforward and streamlined ap-
proach to URL analysis, simplifying the implementa-
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hasOutgo ingLinkTo ( ? a , ? b ) −> i s O u t g o i n g N e i g h b o u r O f ( ? a , ? b )

Figure 6: Every subproperty implies an outgoing neighbouring relationship.

s w r l b : s u b t r a c t ( ? s u b t r a c t i o n , LEVEL , MAX_LEVEL)
^ s w r l b : abs ( ? abs , ? s u b t r a c t i o n )
^ s w r l b : add ( ? a d d i t i o n , LEVEL , MAX_LEVEL)
^ s w r l b : s u b t r a c t ( ? d i v i d e d , ? a d d i t i o n , ? abs )
^ s w r l b : d i v i d e ( ? f i n a l , ? d i v i d e d , 2 )

Figure 7: min(LEVEL, MAX_LEVEL) in SWRL, where LEVEL is the scan level of the neighbour from which is inherited, and
MAX_LEVEL is the maximum inheritance level of a relationship.

tion process. It is likely that this will require extending
an OWL reasoner.

Another direction worth exploring would be the use
of Prolog or Datalog for knowledge representation
and reasoning. These languages are well-suited for
expressing and querying ontological relationships due
to their declarative nature. Datalog especially seems
promising, as it is specifically designed for database
querying and reasoning tasks. In addition, it is sup-
ported by the bi-temporal database used in OpenKAT.
Moreover, both of these languages have built-in rea-
soning mechanisms, which could be a solution to the
shortcomings encountered with the technologies that
we used.

Finally, it seems that there are some options to solve
the aforementioned problems while still using SWT.
For instance, RDFox10 allows for the implementation
of negation as failure in SWRL. Alternatively, the owl-
ready211 project allows mixing Python and SWT, and
supports both local and full closed-world reasoning.
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Hostname ( ? a ) ^ DNSARecord ( ? b )
^ h a s S c a n L e v e l ( ? a , ? l e v e l ) ^ i s O u t g o i n g N e i g h b o u r O f ( ? a , ? b )
^ s w r l b : s u b t r a c t ( ? s u b t r a c t i o n , ? l e v e l , 2 )
^ s w r l b : abs ( ? abs , ? s u b t r a c t i o n )
^ s w r l b : add ( ? a d d i t i o n , ? l e v e l , 2 )
^ s w r l b : s u b t r a c t ( ? d i v i d e d , ? a d d i t i o n , ? abs )
^ s w r l b : d i v i d e ( ? f i n a l , ? d i v i d e d , 2 )
−> h a s I n h e r i t e d S c a n L e v e l ( ? b , ? f i n a l )

Figure 8: Modelling scan level inheritance in our ontology.
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Table 1: Summary of Object Properties.

Object Property Domain (union) Range
fallsUnderDNSZone Hostname DNSZone

hasAddress Hostname IPAddress
hasDNSAAAARecord Hostname DNSAAAARecord

hasDNSRecord Hostname DNSRecord
hasDNSTXTRecord DNSSPFRecord DNTXTRecord

hasHostname DNSRecord, Hostname
DNSSPFMechanismHostname,
DNSZone

hasIPAddress DNSAAAARecord,
DNSARecord,

IPAddress

DNSPTRRecord,
DNSSPFMechanismIP

hasMailHostname DNSMXRecord Hostname
hasNameServerHostname DNSNSRecord Hostname

hasParent DNSZone DNSZone
hasRDNS Hostname IPAddress

hasSOAHostname DNSSOARecord Hostname
hasSPFRecord DNSSPFMechanism DNSSPFRecord
isInNetwork Hostname, IPAddress Network

noDNSAAAARecordFound Hostname Hostname
resolvesToAddress ResolvedHostname IPAddress

Table 2: Summary of Data Properties.

Data Property Domain (union) Range
AddressValue IPAddress xsd:string

Preference DNSMXRecord xsd:int
URI URL xsd:string

hasAll DNSSPFRecord xsd:string
hasDKIM Hostname xsd:boolean
hasExpire DNSSOARecord xsd:int

hasMechanism DNSSPFMechanism xsd:string
hasMinimum DNSSOARecord xsd:int

hasName Hostname, xsd:string
Network

hasPath HostnameHTTPURL xsd:string
hasPort HostnameHTTPURL xsd:integer

hasRefresh DNSSOARecord xsd:int
hasRetry DNSSOARecord xsd:int

hasScheme HostnameHTTPURL xsd:string
hasSerial DNSSOARecord xsd:int
hasValue DNSSPFRecord,

DNSRecord
xsd:string

ttl DNSSPFRecord,
DNSRecord

xsd:int

hasDeclaredScanLevel OOI xsd:decimal
hasInheritedScanLevel OOI xsd:decimal

hasScanLevel OOI xsd:decimal
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Table 3: Summary of SHACL Properties.

Target Class Properties
DNSSOARecord hasSOAHostname, Class: SOAHostname

hasHostname, Class: Hostname
DNSAAAARecord hasHostname, Class: Hostname

hasIPAddress, Class: IPAddressV6
DNSARecord hasHostname, Class: Hostname

hasIPAddress, Class: IPAddressV4
DNSMXRecord hasMailHostname, Class: Hostname

hasHostname, Class: Hostname
Preference, Datatype: xsd:int

DNSNSRecord hasNameServerHostname, Class: Hostname
hasHostname, Class: Hostname

DNSPTRRecord hasIPAddress, Class: IPAddress
hasHostname, Class: Hostname

DNTXTRecord hasIPAddress, Class: IPAddress
hasHostname, Class: Hostname

DNSSPFMechanismHostname hasSPFRecord, Class: DNSSPFRecord
hasHostname, Class: Hostname
hasMechanism, Datatype: xsd:string

DNSSPFMechanismIP hasMechanism, Datatype: xsd:string
hasSPFRecord, Class: DNSSPFRecord
hasIPAddress, Class: IPAddress

DNSZone hasParent, Class: DNSZone
Hostname isInNetwork, Class: Network
IPAddressV4 isInNetwork, Class: Network

AddressValue, Datatype: xsd:string
IPAddressV6 isInNetwork, Class: Network

AddressValue, Datatype: xsd:string
ResolvedHostname resolvesToAddress, Class: IPAddress
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