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Introduction
› Ministry of VWS is working on 

OpenKAT, a tool to monitor and scan 
networked entities for vulnerabilities

› Currently: No formal modelling of the 
data model and rules

› A formalized ontology can help with 
identifying inconsistencies
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About OpenKAT
› How it works

1. Continuously scan the world through (security) tools
2. Normalize the results from those tools into a common knowledge graph
3. Reason about the graph and infer new objects and findings
4. Repeat
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Research questions
› Can we reach feature-parity on a subset of KAT with Semantic Web 

technologies?

› What (if any) problems arise when modelling KAT with Semantic Web 
technologies?
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Ontology: Classes
› Reflect the network components found in 
mispo.es

▪ DNS Records
▪ IP Addresses
▪ Hostnames

› Additional classes made for findings
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Ontology: Properties
Object Properties:

› Standard Networking
▪ hasHostname
▪ hasDNSRecord
▪ And more!

› In total, 17 object properties
▪ Some are not present in a 

network: 
noDNSAAAARecordFound

Data Properties:
› IP address values, Port numbers…
› Not all the information on a network
› But enough to make discoveries
› 17 data properties
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SHACL
› SHACL shapes were created for each class
› Shapes enforce conditions to prevent mistakes

› Example: DNSAAAARecord
▪ Has object properties:

- hasHostname
- hasIPAddress
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SWRL
› Write rules as first-order logic

› Hostname(?h) ^ DNSRecord(?r) ^ IPAddress(?a) 
^ hasIPAddress(?r, ?a) ^ hasHostname(?r, ?h) 
-> resolvesToAddress(?h, ?a)
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Results
1. Weakened inference due to OWA
2. Inferring existence of new individuals
3. Limited flexibility in rules
4. Primary keys and distributed ontologies
5. Modelling scan levels
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1. Weakened inference due to OWA
› Open World Assumption in OWL

The absence of evidence is not evidence of absence

Basically, you can't use classical logical negation in OWL
(requires closed world)
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1. Weakened inference due to OWA
› Negation is very hard
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1. Weakened inference due to OWA
› Negation is very hard

Correct and useful:
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1. Weakened inference due to OWA
› Negation is very hard

Correct but useless:
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1. Weakened inference due to OWA
› Where did all the other instances go?
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1. Weakened inference due to OWA
› Problem when modelling Findings:

▪ KAT-MISSING-DKIM
▪ KAT-MISSING-SPF
▪ KAT-MISSING-DMARC

› These are based on the absence of records
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1. Weakened inference due to OWA
› Problem when modelling Findings:

▪ KAT-MISSING-DKIM
▪ KAT-MISSING-SPF
▪ KAT-MISSING-DMARC

› These are based on the absence of records

› …..actually a deeper problem with KAT!
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1. Weakened inference due to OWA
› What if you disable all active scanning in a fresh install?
› Then create mispo.es objects manually
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1. Weakened inference due to OWA
› What if you disable all active scanning in a fresh install?
› Then create mispo.es objects manually

› KAT concludes:
▪ Hostname mispo.es has missing DKIM, SPF, and DMARC
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1. Weakened inference due to OWA
› What if you disable all active scanning in a fresh install?
› Then create mispo.es objects manually

› KAT concludes:
▪ Hostname mispo.es has missing DKIM, SPF, and DMARC

› …..but KAT didn't actually bother to scan anything
› If these records actually exist, then the claim is wrong
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1. Weakened inference due to OWA
› Potential "solutions":

▪ Assert explicit object properties such as 
NoDNSAAAARecordFoundYet

▪ Use reasoner which treats negation-as-failure
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2. Inferring new individuals
› SWT cannot infer existence of new individuals

▪ KAT does, however

› But this is not necessarily a problem
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2. Inferring new individuals
› Hostname(?h) ^ DNSRecord(?r) ^ IPAddress(?a) 
^ hasIPAddress(?r, ?a) ^ hasHostname(?r, ?h) 
-> resolvesToAddress(?h, ?a)

› Above implements the dns-resolving bit
› Makes ResolvedHostname instance and class redundant!
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3. Limited flexibility in rules
› url-classification essentially decomposes a URL into a schema, 

hostname, and port

› https://mispo.es -> https, mispo.es, 443

› ….but how to model in SWRL?

https://mispo.es
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3. Limited flexibility in rules
› Built-in operators for strings and lists

› swrlb:stringConcat(?uri, "https", "://", "mispo.es")
› swrlb:stringConcat(?uri, ?scheme, "://", ?hostname)  

› Resolver doesn't work with the second one
› Hardcoding makes it convoluted to implement
› Many KAT bits have to parse text
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4. Primary keys and distributed ontologies
› KAT uses natural keys (functional determinants) to determine unique 

objects
› Nice for deduplication and storage optimization
› But what if class definitions change?
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4. Primary keys and distributed ontologies
› KAT uses natural keys (functional determinants) to determine unique 

objects
› Nice for deduplication and storage optimization
› But what if class definitions change?

› Immutability of certain properties may make revisions/updates tricky
› KAT has no way to validate schema changes
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4. Primary keys and distributed ontologies
› OWL references individuals by IRI
› But different IRI's may refer to the same real-world individual
› IRI's have no semantic or logical meaning
› This is perfectly fine in SWT
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4. Primary keys and distributed ontologies
› Mixing ontologies (IRI's) is first-class feature of SWT
› ….provided they don't contradict each other

▪ But SWT has integrated consistency checking!
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4. Primary keys and distributed ontologies
› kat:IPAddress

▪ kat:IPAddressV4
▪ kat:IPAddressV6

› What if we have a third party ontology
› OpenHOND: Handige Objectgeoriënteerde Netwerk Dumper
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4. Primary keys and distributed ontologies
› kat:IPAddress

▪ kat:IPAddressV4
▪ kat:IPAddressV6
▪ hond:IPAddressV8

› Declare hond:IPAddressV8 subclass of kat:IPAddress and disjoint 
with kat:IPAddressV4 and kat:IPAddressV6

› All axioms and rules that apply to kat:IPAddress now also apply to 
hond:IPAddressV8
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4. Primary keys and distributed ontologies
› kat:IPAddress

▪ kat:IPAddressV4
▪ kat:IPAddressV6
▪ hond:IPAddressV4

› Declare hond:IPAddressV4 equivalent to kat:IPAddressV4

› All revisions and changes that apply to hond:IPAddressV4 now also 
apply to kat:IPAddressV4



32| 

4. Primary keys and distributed ontologies
› SWT provides a reliable way to integrate various (versioned) ontologies
› Inconsistencies and contradictions are immediately picked up by the 

reasoner



33| 

5. Modelling scan levels
› Basically, KAT's scan level inheritance can be modelled through SWT
› Actually quite straightforward to implement basic algorithm
› However, limitations in SWRL makes it convoluted

▪ Such as lack of min(a, b) function
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Conclusion
› It is possible to model KAT with SWT

▪ (Based on the subset we attempted to implement)

› However, non-trivial:

▪ Very specialized knowledge required 
- Goes beyond Python programming

▪ Limited flexibility may make certain rules very convoluted to implement

▪ Will have to decide how to tackle OWA
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Future work?
› Rewrite findings to use positive evidence (OWA)

› Investigate atomic functions for e.g. string parsing

› Investigate Datalog/Prolog for reasoning

› Consider implementation-specific workarounds
▪ See e.g. RDFox, which has negation-as-failure
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Thank you for your attention

More details and explanations can be found in the research paper


