
1| 1|

Investigating the use of Semantic Web Technologies in OpenKAT

Maurits Merks
Patrick Darwinkel
Perry van der Zande
Rachelle Bouwens

MSc Artificial Intelligence; MSc Information Science

2|

Introduction
› Ministry of VWS is working on

OpenKAT, a tool to monitor and scan
networked entities for vulnerabilities

› Currently: No formal modelling of the
data model and rules

› A formalized ontology can help with
identifying inconsistencies

3|

About OpenKAT
› How it works

1. Continuously scan the world through (security) tools
2. Normalize the results from those tools into a common knowledge graph
3. Reason about the graph and infer new objects and findings
4. Repeat

4|

Research questions
› Can we reach feature-parity on a subset of KAT with Semantic Web

technologies?

› What (if any) problems arise when modelling KAT with Semantic Web
technologies?

5|

Ontology: Classes
› Reflect the network components found in
mispo.es

▪ DNS Records
▪ IP Addresses
▪ Hostnames

› Additional classes made for findings

6|

Ontology: Properties
Object Properties:

› Standard Networking
▪ hasHostname
▪ hasDNSRecord
▪ And more!

› In total, 17 object properties
▪ Some are not present in a

network:
noDNSAAAARecordFound

Data Properties:
› IP address values, Port numbers…
› Not all the information on a network
› But enough to make discoveries
› 17 data properties

7|

SHACL
› SHACL shapes were created for each class
› Shapes enforce conditions to prevent mistakes

› Example: DNSAAAARecord
▪ Has object properties:

- hasHostname
- hasIPAddress

8|

SWRL
› Write rules as first-order logic

› Hostname(?h) ^ DNSRecord(?r) ^ IPAddress(?a)
^ hasIPAddress(?r, ?a) ^ hasHostname(?r, ?h)
-> resolvesToAddress(?h, ?a)

9|

Results
1. Weakened inference due to OWA
2. Inferring existence of new individuals
3. Limited flexibility in rules
4. Primary keys and distributed ontologies
5. Modelling scan levels

10|

1. Weakened inference due to OWA
› Open World Assumption in OWL

The absence of evidence is not evidence of absence

Basically, you can't use classical logical negation in OWL
(requires closed world)

11|

1. Weakened inference due to OWA
› Negation is very hard

12|

1. Weakened inference due to OWA
› Negation is very hard

Correct and useful:

13|

1. Weakened inference due to OWA
› Negation is very hard

Correct but useless:

14|

1. Weakened inference due to OWA
› Where did all the other instances go?

15|

1. Weakened inference due to OWA
› Problem when modelling Findings:

▪ KAT-MISSING-DKIM
▪ KAT-MISSING-SPF
▪ KAT-MISSING-DMARC

› These are based on the absence of records

16|

1. Weakened inference due to OWA
› Problem when modelling Findings:

▪ KAT-MISSING-DKIM
▪ KAT-MISSING-SPF
▪ KAT-MISSING-DMARC

› These are based on the absence of records

› …..actually a deeper problem with KAT!

17|

1. Weakened inference due to OWA
› What if you disable all active scanning in a fresh install?
› Then create mispo.es objects manually

18|

1. Weakened inference due to OWA
› What if you disable all active scanning in a fresh install?
› Then create mispo.es objects manually

› KAT concludes:
▪ Hostname mispo.es has missing DKIM, SPF, and DMARC

19|

1. Weakened inference due to OWA
› What if you disable all active scanning in a fresh install?
› Then create mispo.es objects manually

› KAT concludes:
▪ Hostname mispo.es has missing DKIM, SPF, and DMARC

› …..but KAT didn't actually bother to scan anything
› If these records actually exist, then the claim is wrong

20|

1. Weakened inference due to OWA
› Potential "solutions":

▪ Assert explicit object properties such as
NoDNSAAAARecordFoundYet

▪ Use reasoner which treats negation-as-failure

21|

2. Inferring new individuals
› SWT cannot infer existence of new individuals

▪ KAT does, however

› But this is not necessarily a problem

22|

2. Inferring new individuals
› Hostname(?h) ^ DNSRecord(?r) ^ IPAddress(?a)
^ hasIPAddress(?r, ?a) ^ hasHostname(?r, ?h)
-> resolvesToAddress(?h, ?a)

› Above implements the dns-resolving bit
› Makes ResolvedHostname instance and class redundant!

23|

3. Limited flexibility in rules
› url-classification essentially decomposes a URL into a schema,

hostname, and port

› https://mispo.es -> https, mispo.es, 443

› ….but how to model in SWRL?

https://mispo.es

24|

3. Limited flexibility in rules
› Built-in operators for strings and lists

› swrlb:stringConcat(?uri, "https", "://", "mispo.es")
› swrlb:stringConcat(?uri, ?scheme, "://", ?hostname)

› Resolver doesn't work with the second one
› Hardcoding makes it convoluted to implement
› Many KAT bits have to parse text

25|

4. Primary keys and distributed ontologies
› KAT uses natural keys (functional determinants) to determine unique

objects
› Nice for deduplication and storage optimization
› But what if class definitions change?

26|

4. Primary keys and distributed ontologies
› KAT uses natural keys (functional determinants) to determine unique

objects
› Nice for deduplication and storage optimization
› But what if class definitions change?

› Immutability of certain properties may make revisions/updates tricky
› KAT has no way to validate schema changes

27|

4. Primary keys and distributed ontologies
› OWL references individuals by IRI
› But different IRI's may refer to the same real-world individual
› IRI's have no semantic or logical meaning
› This is perfectly fine in SWT

28|

4. Primary keys and distributed ontologies
› Mixing ontologies (IRI's) is first-class feature of SWT
› ….provided they don't contradict each other

▪ But SWT has integrated consistency checking!

29|

4. Primary keys and distributed ontologies
› kat:IPAddress

▪ kat:IPAddressV4
▪ kat:IPAddressV6

› What if we have a third party ontology
› OpenHOND: Handige Objectgeoriënteerde Netwerk Dumper

30|

4. Primary keys and distributed ontologies
› kat:IPAddress

▪ kat:IPAddressV4
▪ kat:IPAddressV6
▪ hond:IPAddressV8

› Declare hond:IPAddressV8 subclass of kat:IPAddress and disjoint
with kat:IPAddressV4 and kat:IPAddressV6

› All axioms and rules that apply to kat:IPAddress now also apply to
hond:IPAddressV8

31|

4. Primary keys and distributed ontologies
› kat:IPAddress

▪ kat:IPAddressV4
▪ kat:IPAddressV6
▪ hond:IPAddressV4

› Declare hond:IPAddressV4 equivalent to kat:IPAddressV4

› All revisions and changes that apply to hond:IPAddressV4 now also
apply to kat:IPAddressV4

32|

4. Primary keys and distributed ontologies
› SWT provides a reliable way to integrate various (versioned) ontologies
› Inconsistencies and contradictions are immediately picked up by the

reasoner

33|

5. Modelling scan levels
› Basically, KAT's scan level inheritance can be modelled through SWT
› Actually quite straightforward to implement basic algorithm
› However, limitations in SWRL makes it convoluted

▪ Such as lack of min(a, b) function

34|

Conclusion
› It is possible to model KAT with SWT

▪ (Based on the subset we attempted to implement)

› However, non-trivial:

▪ Very specialized knowledge required
- Goes beyond Python programming

▪ Limited flexibility may make certain rules very convoluted to implement

▪ Will have to decide how to tackle OWA

35|

Future work?
› Rewrite findings to use positive evidence (OWA)

› Investigate atomic functions for e.g. string parsing

› Investigate Datalog/Prolog for reasoning

› Consider implementation-specific workarounds
▪ See e.g. RDFox, which has negation-as-failure

36|04-01-2019

Thank you for your attention

More details and explanations can be found in the research paper

